Seed Formation

Daughters Labeled with Hairpins $\sim 60 \%$ yield

Self-Sustained Replication of an RNA Enzyme

 Tracey A. Lincoln and Gerald F. Joyce*SCIENCE, 323, 1229, 2009

Why don't we try two tiles? And do it with Origamis

Different systems, same idea

BTX DNA Tiles

40 nm
DNA Origamis

Design of DNA origami

Paul W.K. Rothemund
Computer Science and Computation and Neural Systems California Institute of Technology, Pasadena, CA 91125

Rothemund's DNA Origamis

PXAFM058

TCCTTCTGGTd

Basic tile set for self-replication

SEED TILES

LATER-GENERATION TILES

Labelling with letter " T "

Replication cycles - cool/UV/heat -repeat

Number of Dimers Doubles each cycle!

Here's 500X multiplication of seed

Self-Replication Plot (1:1024)

AFM Images of 1024 replication

 mostly single tiles

Replication by Serial Dilution

- Use the self-replicated sample (ratio: 1:32) after four cycles
- Allow approximately 14 -fold amplification before transferring $\sim 6 \%$ of the mixture to a new reaction tube that contained a fresh supply of monomers.

Gel analysis shows same growth as counting Origami

Temperature and light cycles NO SEED

Evolution - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Evolution *
Evolution is the change in the inherited characteristics of biological populations over successive generations. Evolutionary processes give rise to diversity at ...

Schematic Evolution

Original Species

Mutations with inheritable traits

Environment Changes - Fire - need theory of Plasmas - advantage to one species

Environment Changes - advantage to one species growth rate higher - species takes over

Red - Green Origami Evolution

Original Species

Mutations with
inheritable traits

~ equal growth

Environment Changes - Red Light - advantage to one species

Selection - higher growth rate - Green takes over

Laser Heating of IR Dyes

Local heating

$$
\begin{aligned}
j_{Q} & \sim \frac{Q}{4 \pi r^{2}} \\
T & =T_{0}+\delta T / r
\end{aligned}
$$

	Seed HH	FG H-2 IR700	SG H-1 IR700	Seed II	FG I-4 IR800	SG IR3 IR800
C 0	1	8	6	1	8	6

Cycle 2

Cycle 4

Cycle Number

Can reverse selection by switching lights

Grow in green 1 step then switch to red

How about growing it outside?

Roof Top - Washington Sq Park

Roof Top DNA Origami Solar Replicator

After a cold night, rays from the sunrise hit the sample for about 2 hours

As the sun continues to rise, rays are blocked from hitting the sample and now serve to heat the dirt

Why Dirt?

Ambient temperature
32-36F $\rightarrow 0-2 \mathrm{C}$

Dirt Temperature 32-96F -> 0-35C

FOIL OVERHANG

STYROFOAM CONTAINER

Original Dimer:Mono Ratio - 1:30

After One Sunny Day:

Control Sample on roof (in Al Foil)
Dimers Remain Same Concentration

Sunny Sample
Dimers Doubled

DNA as a functional material

Now much DNA is there?

Enough to build 200 cities the size of New York

Summary

-Dynamic Clustering when flux in $\left(\rho_{+}\right)>$flux out
-DNA is a great structural material

- specific, controllable, reversible, or permanent bonds
- $1^{\text {st }}$? Artificial Self-replicating system with:
- design flexibility
- autonomous offspring
- no enzymes
- exponential growth (great way to make zillions of nanodevices)
- uses only temperature and light mimicking daily cycles
- replicates information and structure
- 1: 7,500,000 and growing
- Next:
-evolution
-without nucleic acids

Basic Energy Science

Keck Foundation NYU NSF MRSEC GORDON AND BETTY

FOUNDATION

