PHYSICS IN THE WORLD OF IDEAS:
COMPLEXITY AS ENERGY

Yuri I. Manin
PLAN

PART I: MODERN META-PHYSICS: STRUCTURE OF PHYSICAL LAWS

PART II: KOLMOGOROV COMPLEXITY

PART III: ZIPF’s LAW AS “MINIMIZATION OF EFFORT”

PART IV: ERROR-CORRECTING CODES AND PHASE TRANSITIONS

PART V: COMPLEXITY IN QUANTUM COMPUTING?
PART I. MODERN META–PHYSICS:
STRUCTURE OF PHYSICAL LAWS

- **An isolated system**: configuration/phase space X.

- **Energy/action**: function(al)s $E, S : X \to \mathbb{R}$.

- **Classical partition function/quantum evolution**:

 $$Z_T := \int_X e^{-E(x)/T} \, dx \quad \text{vs} \quad Z = \int_X e^{iS(x)} \, dx$$

- **Probability density/quantum evolution operator**:

 $$\frac{1}{Z_T} e^{-E(x)/T} \, dx \quad \text{vs} \quad \frac{1}{Z} e^{iS(x)}$$

NB Inverse temperature $T \iff$ imaginary time it!

- Symmetries, scale invariance etc.
PART II: KOLMOGOROV COMPLEXITY

Zoo of complexities:

Logarithmic of combinatorial objects
Kolmogorov complexity
Exponential of computable functions

An intuitive description:

- Logarithmic Kolmogorov complexity of \(\omega \) is defined as

\[
\text{the measure of compressibility of } \omega := \\
\text{the length of the shortest program that can generate } \omega
\]
A representative example:

\[\omega := \text{an integer } N > 0, \text{ represented by } N \text{ written dashes.} \]

The length of its compressed description is \[\leq \log_2 N + c, \]
and its exponential Kolmogorov complexity is \[\leq C N. \]
Symmetry group and fractality

- **Symmetry group** S^rec_∞: for any totally recursive permutation $\sigma : \mathbb{Z}_+ \to \mathbb{Z}_+$, there exists a constant $c = c(\sigma)$ such that difference of log-complexities of x and $\sigma(x)$ is $< c$.

- **Fractality**: For any infinite decidable subset $D \subset \mathbb{Z}_+$, the graph of log-complexity restricted upon D has, up to additive $O(1)$, the same form as the total graph.

Example: $D := \{ n^n \ldots ^n (n \text{ times}) \mid n = 1, 2, 3, \ldots \}$

- The standard application of symmetry: one can define complexity for any objects of any infinite "constructive world" X, for example, a language in the sense of comp. sci.

X comes with a computable numbering, and arbitrari-ness in its choice (almost) does not influence the size of complexity.
- **Exponential complexity and Kolmogorov order.**

Let X be a constructive world. For any (semi)–computable function $u : \mathbb{Z}_+ \to X$, the (exponential) complexity of an object $x \in X$ relative to u is

$$K_u(x) := \min \{m \in \mathbb{Z}_+ \mid u(m) = x\}.$$

If such m does not exist, we put $K_u(x) = \infty$.
• CLAIM: there exists such \(u \) ("an optimal Kolmogorov numbering", or "decompressor") that for each other \(v \), some constant \(c_{u,v} > 0 \), and all \(x \in X \),

\[
K_u(x) \leq c_{u,v}K_v(x).
\]

This \(K_u(x) \) is called exponential Kolmogorov complexity of \(x \).

A Kolmogorov order of a constructive world \(X \) is a bijection \(K = K_u : X \to Z \) arranging elements of \(X \) in the increasing order of their complexities \(K_u \).
• **WARNINGS:**

 – Any optimal numbering is only partial function, and its definition domain is not decidable.

 – Kolmogorov complexity K_u itself is not computable. It is the lower bound of a sequence of computable functions.

 – Kolmogorov order of \mathbb{Z}_+ cardinally differs from the natural order in the following sense: it puts in the initial segments very large numbers that can be at the same time Kolmogorov simple.

 – **Example:** let $a_n := n^n \ldots^n$ (n times).

 Then $K_u(a_n) \leq cn$ for some $c > 0$.
• MY CENTRAL ARGUMENT IN THIS TALK:

I will argue that there are natural observable and measurable phenomena in the world of information that can be given a mathematical explanation, if one postulates that logarithmic Kolmogorov complexity plays a role of energy.

I will consider two examples: Zipf’s Law and asymptotic bounds in the theory of error–correcting codes.
PART III: ZIPF LAW AS “MINIMIZATION OF EFFORT”

- Consider a corpus of texts in a given language, make the list of words occurring in them and the numbers of occurrences. Range these words in the order of diminishing frequencies. Define the Zipf rank of a word as its number in this ordering.

- *Zipf's Law (1935, 1949):*

 FREQUENCY

 IS INVERSELY PROPORTIONAL TO THE RANK
PICTURE:

Zipf's distribution of Russian words (logarithmic scale)
• **Universality of Zipf's law:** the law is empirically observed in very different databases, that allow one to calculate frequency of occurrence of certain **patterns** ("words") in certain **massifs of data**.

• **Example on the next page:** patterns in **financial audit data**.

• "Unlike the central limit theorem [...] this law is primarily an empirical law; it is observed in practice, but mathematicians still do not have a fully satisfactory and convincing explanation for how the law comes about, and why it is so universal."

 Terence Tao
An investigation of Zipf's Law for fraud detection (DSS#06-10-1826R(2))

Shi-Ming Huang, David C. Yen, Luen-Wei Yang, Jing-Shiuan Hua

* Department of Accounting & Information Technology, National Chung-Cheng University, Chia-Yi, Taiwan, ROC
b Department of DSS & MIS, Miami University, Oxford, OH 45056, United States
c Department of Information Management, National Chung-Cheng University, Chia-Yi, Taiwan, ROC

Fig. 1. Fraud detection model of Zipf Analysis.
ZIPF’s RANK AND ZIPF’s LAW
FROM COMPLEXITY

- I suggest that (at least in some situations) Zipf’s law emerges as the combined effect of two factors:

(A) Rank ordering coincides with the ordering with respect to the growing (exponential) Kolmogorov complexity $K(w)$ up to a factor $\exp(O(1))$.

(B) The probability distribution producing Zipf’s law is (an approximation to) the L. Levin a priori distribution.
If we accept (A) and (B), then Zipf’s law follows from two basic properties of Kolmogorov complexity:

(a) rank of \(w \) defined according to (A) is \(\exp(O(1)) \cdot K(w) \).

(b) L. Levin’s a priori distribution assigns to an object \(w \) probability \(\sim KP(w)^{-1} \) where \(KP \) is the exponentiated prefix Kolmogorov complexity, and we have, up to \(\exp(O(1)) \)-factors,

\[
K(w) \preceq KP(w) \preceq K(w) \cdot \log^{1+\epsilon} K(w)
\]

with arbitrary \(\epsilon > 0 \).

- NB A probability distribution on infinity of objects cannot be constructed directly from \(K \): the series \(\sum_m K(m)^{-1} \) diverges. However, on finite sets of data the small discrepancy is additionally masked by the dependence of both \(K \) and \(KP \) on the choice of an optimal encoding.
- **COMPLEXITY AS EFFORT.** The picture described above agrees with Zipf's motto "minimization of effort", but reinterprets the notion of effort: its role is now played by the logarithm of the Kolmogorov complexity that is, by the length of the maximally compressed description of an object.

Such a picture makes sense especially if the objects satisfying Zipf's distribution, are *generated* rather than simply *observed.*
PART IV: ERROR-CORRECTING CODES
AND PHASE TRANSITIONS

• BASIC NOTATION:

Alphabet \(A := \) a finite set of cardinality \(q \geq 2 \).

Code \(C \subset A^n := \) a subset of words of length \(n \).

Hamming distance between two words:

\[
d((a_i), (b_i)) := \text{card}\{i \in (1, \ldots, n) | a_i \neq b_i\}.
\]
Code parameters: cardinality of the alphabet q and

$$
n(C) := n, \quad k(C) := k := [\log_q \text{card}(C)],
$$

$$
d(C) := d = \min \{d(a, b) \mid a, b \in C, a \neq b\}.
$$

Relative distance and Transmission rate:

$$
\delta(C) := \frac{d(C)}{n(C)}, \quad R(C) = \frac{k(C)}{n(C)}.
$$

Briefly, C is an $[n, k, d]_q$-code.
SOURCE DATA

Encoding:

\[\downarrow \]

A sequence of code words

Noisy channel:

\[\downarrow \]

Sequence of (corrupted) code words

Error correction:

\[\downarrow \]

(Ideally) sequence of initial code words

Decoding:

\[\downarrow \]

TRANSMITTED DATA
Examples: Morse code and Barcodes

Samuel F. B. Morse
(from 1836 on)

Alphabet: \{dash, dot, space\},
\(q = 3 \).
Block length: \(n = 7 \)
\(d = \)?: (Exercise)

Norman J. Woodland
(from 1949 on):
“His [...] inspiration came from Morse code, and he formed his first barcode from sand on the beach.

I just extended the dots and dashes downwards and made narrow lines and wide lines out of them”
• Explaining terms:

(Minimal) relative distance and Transmission Rate:

\[\delta(C) := \frac{d(C)}{n(C)}, \quad R(C) = \frac{[k(C)]}{n(C)}. \]

Minimal Relative Distance must match channel’s *noisiness*: probability of corruption of one letter.

Transmission rate is the share of meaningful (code) words; their number must be maximized for any given relative distance.
• A good code must maximize minimal relative distance when the transmission rate is chosen.

• One more property of good codes: they must admit efficient algorithms of encoding, decoding and error-correction.

How this can be achieved: consider structured codes. Typical choice:

• Linear codes := linear subspaces of F_q^n.
- **Code points:**

\([n, k, d]_q - code C \mapsto P_C := (R(C), \delta(C)) = \left(\frac{[k(C)]}{n(C)}, \frac{d(C)}{n(C)} \right)\)

How a finite pixel plot of all code points might look \((q \text{ fixed})\)
Explanations to the picture:

- **DEFINITION.** *Multiplicity* of a code point is the number of codes that project onto it.

- **THEOREM (Yu.M., 1981 + 2011).** There exists such a continuous function $\alpha_q(\delta)$, $\delta \in [0, 1]$, that

 (i) The set of code points of infinite multiplicity is exactly the set of rational points $(R, \delta) \in [0, 1]^2$ satisfying $R \leq \alpha_q(\delta)$.

The curve $R = \alpha_q(\delta)$ is called **the asymptotic bound**.
(ii) Code points x of finite multiplicity all lie above the asymptotic bound and are called isolated ones:

for each such point there is an open neighborhood containing x as the only code point.

(iii) The same statements are true for linear codes, with, a possibly, different asymptotic bound $R = \alpha_q^{lin}(\delta)$.
ASYMPTOTIC BOUNDS FROM COMPLEXITY

- Oracle assisted approximate computation of the asymptotic bound.
 - The set $Codes_q$ of all q–ary codes in a fixed alphabet A is a constructive world.
 - CLAIM. If an oracle produces for us elements of $Codes_q$ in their Kolmogorov order, then we can write an oracle assisted algorithm that for each “pixel size” N^{-1} enumerates all code points of the form

\[
(k/N, d/N), \quad a, d \in \mathbb{Z}_+
\]

CFR. PICTURE ON PAGE 24
• Partition function for codes involving complexity.

 - The function $\alpha_q(\delta)$ is continuous and strictly decreasing for $\delta \in [1, 1 - q^{-1})$.

 Hence the limit points domain $R \leq \alpha_q(\delta)$ can be equally well described by the inequality $\delta \leq \beta_q(R)$ where β_q is the function inverse to α_q.

 - Fix an $R \in \mathbb{Q} \cap (0, 1)$. For $\Delta \in \mathbb{Q} \cap (0, 1)$, put

 $$Z(R, \Delta; \beta) := \sum_{C : R(C) = R, \Delta \leq \delta(C) \leq 1} K_u(C)^{-\beta + \delta(C) - 1},$$

 where K_u is an exponential Kolmogorov complexity on $Codes_q$.
• **Theorem.** (i) If $\Delta > \beta_q(R)$, then $Z(R, \Delta; \beta)$ is a real analytic function of β.

(ii) If $\Delta < \beta_q(R)$, then $Z(R, \Delta; \beta)$ is a real analytic function of β for $\beta > \beta_q(R)$ such that its limit for $\beta - \beta_q(R) \to +0$ does not exist.

• **Thermodynamical analogies.**

– The argument β of the partition function corresponds to the inverse temperature.

– The transmission rate R corresponds to the density ρ.

– Our asymptotic bound transported into $(T = \beta^{-1}, R)$-plane as $T = \beta_q(R)^{-1}$ becomes the phase transition boundary in the (temperature, density)-plane.
Can we see the asymptotic bound
plotting the set of (linear) code points of bounded size?

NO, we will see a cloud of points
concentrating near the Varshamov–Gilbert bound
PART V. COMPLEXITY
IN QUANTUM COMPUTING?
REFERENCES

